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Abstract

In the last decade, massive omics datasets have been generated for human brain research. It is evolving so fast that a timely
update is urgently needed. In this review, we summarize the main multi-omics data resources for the human brains of both
healthy controls and neuropsychiatric disorders, including schizophrenia, autism, bipolar disorder, Alzheimer’s disease,
Parkinson’s disease, progressive supranuclear palsy, etc. We also review the recent development of single-cell omics in brain
research, such as single-nucleus RNA-seq, single-cell ATAC-seq and spatial transcriptomics. We further investigate the
integrative multi-omics analysis methods for both tissue and single-cell data. Finally, we discuss the limitations and future
directions of the multi-omics study of human brain disorders.
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Introduction

Global burden of neuropsychiatric disorders
and research efforts

According to the data from the latest Global Burden of Diseases

(GBD) Study [1, 2], the death rate per 100 k population caused by

neuropsychiatric disorders has increased by 76% in the last 30

years (Figure 1A). The disability-adjusted life-years (DALYs; the

sum of years lived with disability and years of life lost) also show

significantly different patterns of age groups among the various

neuropsychiatric disorders (Figure 1B). For example, headache

and depressive disorders are leading in young and mid-aged

adults, while neurodegenerative disorders such as Alzheimer’s

and Parkinson’s diseases are greatest in the age group 75 years

to older than 95 years. Alzheimer’s disease and other dementias

have increased the most among other neuropsychiatric disor-

ders, partially due to the aging population structure of many

countries such as China and the United States. Neuropsychi-
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atric disorders are becoming a significant burden for the whole

world. In the United States, total expenses in 2020 alone for

health care, long-term care and hospice services for people

aged 65 and older with dementia are estimated to be US$305

billion [3].

Understanding the human brain is one of the critical steps

to finding cures for neuropsychiatric diseases eventually. Over

the past decades, many countries have recognized the urgent

need and launched large-scale projects, including the US BRAIN

Initiative, the Human Brain Project at European Union, China

Brain Project,Canadian Brain Research Strategy,Australian Brain

Alliance, Japan Brain/MINDS Project and the recently launched

International Brain Initiative [4]. While these brain initiatives

may have various goals and different foci, for example, the EU

Human Brain Project initially aimed to build a brain stimulator,

they now all have a common component—using the latest omics

technologies to understand the molecular functions of brain

cells and their roles in neuropsychiatric diseases.
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Figure 1. The global death rate of various neuropsychiatric disorders between 1990 and 2019, and DALYs by age in 2019. The neuropsychiatric disorders here include

neurological disorder (B.5) and mental disorders (B.6) defined in the Global Burden of Diseases study. The plots were made based on data retrieved from the GBD

Compare Viz Hub website [2] in December 2020

Multi-omics and its use in research
of neuropsychiatric disorders

Two major types of research are commonly used to study neu-

ropsychiatric disorders in humans: genetic study and biomarker

study. The genetic study is based on the fact that most neu-

ropsychiatric disorders have genetic roots. Genetic studies can

detect common single-nucleotide polymorphisms (SNPs) associ-

ated with disorders, de novomutations in affected offspring and

rare copy number variants that are enriched in patients. While

these genetic findings provided limited mechanistic insights for

diseases, the major problems in the genetic studies include: (1)

incomplete annotation of gene functions; (2) imprecise mapping

of causal variants; (3) gap between association and causation;

(4) poor understanding of the role of genetic variants in noncod-

ing parts of the genome [5]. Another more translation-oriented

approach is to discover biomarkers. Biomarker study targets

the biological changes in patients in various states. Various

biomaterials have been explored in comparing patients to con-

trols, treated versus drug-naïve patients, or responders versus

nonresponders. Biomarker-based disease subtyping and patient

subgrouping may be valuable for optimizing treatment.

Both genetic and biomarker studies rely heavily on multi-

omics data to achieve their goals. Multi-omics data refer to

system-wide data of multiple ‘omes’, such as the genome,

methylome, transcriptome, epigenome, proteome, metabolome

and microbiome. Multi-omics data are frequently used to

annotate disease-associated SNPs and genomic regions, to

construct putative regulatory networks, and to assess potential

causal or mediation relationships.Multiple omics can be used to

interpret biological mechanisms of neuropsychiatric disorders

in a concerted way. Multi-omics data offer unique support

for independent biological validation of mechanistic findings.

Following the central dogma,multi-omics data can help us track

the molecular changes at different biological levels associated

with the genetic variants, environmental changes and affected

status.

In the past 10 years, massive data of multi-omics have been

generated. Some of them were specifically in the brain, which

is critical for the study of neuropsychiatric disorders. The other

non-brain data are also useful references (e.g. the impact of

intrauterine environment on the risk of schizophrenia [6]). Many

multi-omics data were generated in matched tissues from both

patients and controls,while the rest were only fromhealthy con-

trols. Some of the data are from tissues of a few donors or a few

cultured cells,while the others are frompopulation cohorts.Data

from sizable samples can present population variations,which is

important for genetic studies. Besides the original quantification

data of each -omics, derivatives such as reference maps, quan-

titative trait loci (QTL) are commonly used. They are important

resources for both genetic study and biomarker discovery. This

review summarized the major resource of available multi-omics

data that can be used for the study of neuropsychiatric disorders,

along with tools.

In this review, we focus on the omics data from human brain

samples of healthy controls and patients with neuropsychiatric

disorders. The omics include measurements of abundance and

variations from genomic DNA, various DNA methylation, coding

mRNA and noncoding RNA (microRNA, long noncoding RNA

or lncRNA), actively translated RNA measured by Ribo-seq and

protein, along with other epigenomic features, including chro-

matin accessibility measured by ATAC-seq or DNase-seq, 3D

chromosome and genome structure by Hi-C. Most of the data

were generated by next-generation sequencing. Small amounts

of data were from microarray or Illumina BeadChip. These dif-

ferent omics data covered major biological components of the

central dogma. Various brain regions and developmental stages

were covered at different degrees. Single-cell data are described

separately as it captures cell-type-specific features that can be

missed by bulk tissue data.

Due to space limitations,we did not covermany other pheno-

typic data useful for studying neuropsychiatric diseases. Exam-

ples include brain imaging data, physiological and behavioral

traits and animal models. All of these can be informative in

modeling disease mechanisms and in formulating prediction

algorithms.

Multi-omics data resources
for neuropsychiatric disorders

We investigated the major cohorts or projects producing multi-

omics data either general for human biology or specific to neu-

ropsychiatric diseases (see summary in Table 1). We have to

emphasize that the list of consortia listed below is likely incom-

plete. There are many other important omics resources unlisted

here due to space limitation. We might also miss some indi-

vidual omics datasets for other neuropsychiatric disorders, for

example, 24 total RNA-seq for the cortex of autistic brains [7],

RNA-seq for 15 brains for multiple sclerosis [8] and >110 K

single-cell neuronal transcriptomes for epilepsy [9]. This field

is fast evolving. To keep tracking the up-to-date human brain
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Table 1. Summary of main multi-omics consortia

General consortia

Consortium Access Diseases α Subject size β Omics assay type γ

ENCODE Open Healthy, cancer variable (sc)RNA-seq, ChIP-seq, DNase-seq,

ATAC-seq, eCLIP-seq, ChIA-PET, Hi-C,

CAGE, methylation etc.

GTEx Controlled Healthy 948 WGS, WES, polyA+ RNA-seq

Roadmap Epigenomics Open Healthy variable polyA+ RNA-seq, ChIP-seq, DNase-seq,

methylation

FANTOM Open Healthy variable CAGE, RNA-seq, RADICL-seq

OmicsDI Open Various variable Transcriptomics, genomics, proteomics,

metabolomics, metagenomics, etc.

UK Biobank Controlled Various 500 000 Genotyping, WES, WGS

Brain-related consortia

Consortium Access Diseases α Subject size β Omics assay type γ

psychENCODE Controlled Healthy, SCZ, BP, ASD 2793 (sc)RNA-seq, ChIP-seq, Hi-C, ATAC-seq,

methylation, genotyping

CommonMind Controlled Healthy, SCZ, BP 1143 WGS, RNA-seq, ATAC-seq

AMP-PD Controlled Healthy, PD 10 247 WGS, total RNA-seq

AMP-AD Controlled Healthy, AD, PSP 4470 WGS, genotyping, RNA-seq

BRAINcode Controlled Healthy, PD, AD 200 Total RNA-seq, genotyping

BrainSeq Open Healthy, SCZ, MDD, BP 861 RNA-seq, genotyping, methylation

Aging, Dementia and TBI Study Controlled Healthy, TBI, AD 107 Total RNA-seq

NIAGADS - ADSP umbrella Controlled Healthy, AD, CBD, PSP 23 868 WGS, WES

NIAGADS - NG00057 Open Healthy, PD, AD 18 Total RNA-seq

NIAGADS - NG00038 Open Healthy, AD 492 Expression array, genotyping

BrainSpan Open Healthy 42 polyA+ RNA-seq, expression array,

methylation

IMAGE-CpG Open Healthy, EP 17 Methylation

BOCA Open Healthy 5 ATAC-seq

Braineac Dead link Healthy 134 Expression array, genotyping

HBT Open Healthy 57 Expression array, genotyping

BrainCloud Open Healthy 270 Expression array, genotyping, methylation

NeMO Open Healthy 418 scRNA-seq, scATAC-seq

αSCZ: Schizophrenia; BP: Bipolar disorder; ASD: Autism SpectrumDisorders; MDD: Major Depression Disorder; TDI: Traumatic Brain Injury; EP: Epilepsy; PD: Parkinson’s
disease; AD: Alzheimer’s disease; PSP: Progressive supranuclear palsy; CBD: Corticobasal degeneration
βNote we try to count the subject size (not the sample size) in the cohort, except for NeMO.
γ We try our best to specify the RNA-seq type of a cohort: polyA+ RNA-seq (if all are polyA+ RNA-seq), total RNA-seq (if all are total RNA-seq), or RNA-seq (if mixture
of both). WGS: Whole-genome sequencing; WES: Whole-exome sequencing.

multi-omics datasets, we keep the data source table [10] publicly

editable so that everyone can contribute to the list.

General consortia

ENCODE

The Encyclopedia of DNA Elements (ENCODE) project was ini-

tially launched in 2003 as an international effort to character-

ize the regulatory function of approximately 1% of the human

genome [11]. Further development included collecting whole-

genome data generated by sequencing-based technologies, such

as RNA-seq, DNA methylation, chromatin immunoprecipitation

sequencing (ChIP-seq for histone andTF),DNase I hypersensitive

sites, and these assays were performed across multiple cell lines

[12]. Transcription factor binding site data represents a unique

resource not readily available from other projects [13]. Recent

years have seen the expansion of data types, such as chro-

matin interaction analysis by paired-end tagging (ChIA-PET),

high-throughput chromatin conformation capture technology

(Hi-C). As of December 2020, the ENCODE Experimental Matrix

showed 10 314 human multi-omics datasets. Although ENCODE

has primarily focused on cell lines, recent updates include some

omics data from the human brain, primary neurons or neuronal

cell lines (i.e. 449 experiments in human brain organ as of

December 2020 [14]). At the current Phase 4, the ENCODE project

continues data assembly, computational analysis and functional

characterization of the human genome [15].

Roadmap Epigenomics

Roadmap Epigenomics project collected RNA-seq, ChIP-seq (his-

tone), DNase-seq and methylation data primarily from human

blood and 22 tissue types [16]. Although the program ended in

2018, the open-access epigenomic data, now included in the

ENCODE data portal, remain a viable resource for multi-omics

integrative analyses [17]. As of December 2020, the ENCODE

Experimental Matrix showed 2154 multi-omics human datasets

released in Roadmap, including 158 datasets associated with

adult and fetal human brains.
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FANTOM

Over the last 20 years, the Functional AnnoTation Of the Mam-

malian genome(FANTOM) Consortium has collected an exten-

sive resource to understand transcriptional regulation across

healthy human/mouse cells and tissues, including noncoding

transcripts [18, 19]. Cap Analysis of Gene Expression (CAGE) data

are the very unique data from this project, critical for defining

transcription start sites. FANTOM5 created the most compre-

hensive catalog of enhancers and promoters, which included

brain-specific annotations [20]. FANTOM6 focuses on annotating

noncoding RNA,which has been amajorweakness in the current

genome annotation. FANTOM data have been used in numerous

multi-omics tools, such as HACER (Human Active Enhancers to

interpret Regulatory variants) that integrates FANTOM5, expres-

sion quantitative trait locus (eQTL) databases, transcription fac-

tor binding sites (TFBSs) from ENCODE, nascent RNA sequenc-

ing (GRO/PRO-seq) and Hi-C data, including brain cell-specific

analysis [21].

GTEx

The Genotype-Tissue Expression (GTEx) project aims to charac-

terize variation in gene expression levels across individuals and

diverse tissues of the human body [22]. Besides the identification

of cis-eQTLs, tissue-specific trans-eQTLs were discovered, as

well as eQTL interactions across cell types, sex chromosome-

specific eQTLs. The processed data are available for download

and accessible through a web interface. It should be noted that

GTEx has transcriptome profiles of multiple brain regions with

a fairly large sample size (n<255).

OmicsDI

Omics Discovery Index (OmicsDI) is a platform for searching

multi-omics datasets [23]. It integrates proteomics, genomics,

metabolomics and transcriptomics datasets from multiple

databases, ranging from GEO and European Genome-phenome

Archive (EGA) to the Library of Integrated Network-Based Cel-

lular Signatures (LINCS), dbGaP and more. It enables searching

for data by the organism, disease, tissue, gene identifiers and

keywords. As of December 2020, the search for ‘brain’ yields

116 261 results, out of which 10 are multi-omics datasets.

Brain-specific consortia

Allen Brain Atlas

The Allen Institute for Brain Science was among the first efforts

for creating a systematic resource of brain-specific omics data

linked to anatomic structures [24]. The Allen Human Brain Atlas

collected microarray expression profiling and MRI measures of

approximately 900 neuroanatomical slices of the brain from

two individuals, effectively demonstrating that gene expression

correlates with spatial localization [25]. Further development

included collecting temporal and spatial gene expression pro-

grams of developing human and mouse brains, aging, dementia,

traumatic brain injury (TBI) and IVY glioblastoma atlas project.

Two such programs include BrainSpan (RNA-seq for up to 16

brain regions from 42 developing human brains) and the Aging,

Dementia and TBI study (total RNA-seq for 107 subjects). The

latest additions include single-cell RNA sequencing and in situ

hybridization from various parts of the human, mouse, and

rhesus macaque cortex, hippocampus, spinal cord, comparative

cellular anatomy in the thalamus. Patch-seq is another new

addition [26]. The data are freely available online or via program-

matic access (AllenSDK, Brain Modeling Toolkit, DiPDE simula-

tion platform). Although gene expression is the primary focus

of the Allen Brain Atlas, the availability of electrophysiological

and morphological data makes it a unique resource for spatial

transcriptomics of the brain.

PsychENCODE

PsychENCODE Consortium was created in 2015 to focus on

genomics and epigenomics data of the human brain for

studying neuropsychiatric disorders [27]. PsychENCODE data

are featured with the largest collection of brains (2793 unique

donors) of controls and major psychiatric disorders, including

schizophrenia, bipolar disorder and autism. The majority of

the data are from postnatal, adult brains. But developmental

aspects have also been consistently covered for the interests

of developmental disorders [28, 29]. Almost all brains have

genotype data,making them the best-powered data formapping

molecular quantitative trait loci. The first release of data is

primarily from bulk tissue. RNA-seq transcriptome is available

for all tissues. Histone markers ChIP-seq, ATAC-seq, Ribo-seq,

proteomics, DNA methylation, Hi-C data are available for some

tissues. The frontal cortex is the major brain region studied

by this consortium. The analyses of part of the first release

data delivered 11 research papers [30]. Besides controlled-

access raw data, psychENCODE provides a constant growing

list of processed, derived and integrative results, such as

lists of brain-expressed genes, disease-associated genes, co-

expression modules, brain single-cell expression profiles,

histonemodification data,over 79K enhancers, chromatin loops,

and topologically associating domains, over 2.5 M eQTLs and

SNPs associated with splicing, cell specificity and chromatin

activity. Linking transcription factors and enhancers to target

genes enabled the creation of a network of 321 genes. These

data have been used to train machine- and deep-learning

models to predict psychiatric phenotypes, achieving over a

6-fold increase in performance over additive polygenic risk

scores [31]. PsychENCODE data are one of the best data for

evaluating population variations of omics in the human brain,

as complementary to ENCODE, Roadmap or Brain Atlas data.

GTEx, which is popular for its multiple-tissue eQTL, is dwarfed

by brain-specific data from PsychENCODE for its size and

comprehensiveness. PsychENCODE is moving into its second

phase with an emphasis on single-cell data.

AMP-AD

The Accelerating Medicines Partnership (AMP) is a precom-

petitive partnership among NIH, pharmaceutical companies

and nonprofit organizations that focuses on identifying and

validating promising biological targets for diagnostics and drug

development. AMP-AD, as one of three initial programs under

the AMP umbrella, was budgeted for 5 years with US$185.2

million. The goal of AMP-AD is to apply cutting-edge systems

and network biology approaches to integrate multidimensional

human molecular data (genomic, epigenomic, RNA, proteomic)

from more than 2000 human brains at all stages of Alzheimer’s

disease (AD) with clinical and pathological data. The three

largest AMP-AD studies that contributed the most multi-omics

data are ROSMAP, MSBB and MayoRNAseq. For example, the

Mount Sinai Brain Bank (MSBB) study provided total RNA

sequencing for over 1700 brain samples from four brain regions

(superior temporal gyrus, frontal pole, parahippocampal gyrus
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and inferior frontal gyrus). Most of the subjects had also done

whole-exome sequencing (WES), whole-genome sequencing

(WGS) and mass spectrometry for proteomics. Additional to the

multi-omics data, comprehensive clinical andneuropathological

assessments including Braak AD-staging score, the density of

neuritic plaques, clinical dementia rating scale (CDR), mini-

mental state examination (MMSE), CERAD score [32], and

histology staining were also provided for most participants. The

other AMP-AD study ROSMAP provided genomics, transcrip-

tomics, proteomics, epigenomics (e.g. H3K9ac ChIP-seq, DNA

methylation) and metabolomics for up to 2214 brain samples.

ROSMAP also generated single-cell transcriptomics data for over

48 brains from AD and subjects with no cognitive impairment

[33, 34]. The rich set of AMP-AD data, together with other AD

projects, is hosted in the AD Knowledge Portal (https://adkno

wledgeportal.synapse.org), one of the largest data portals for AD

research.

AMP-PD

Another program under the AMP umbrella for neurological dis-

ease is AMP-PD (https://amp-pd.org). Launched in 2018, AMP-

PD aims to identify and validate diagnostic, prognostic and/or

disease progression biomarkers for Parkinson’s disease (PD) via

an in-depth molecular characterization and longitudinal clin-

ical profiling of PD patient data and biosamples in existing

cohorts. The initial release of AMP-PD included 4298 participants

from four cohorts [35]: the Michael J. Fox Foundation (MJFF)

and National Institutes of Neurological Disorders and Stroke

(NINDS) BioFIND study, Harvard Biomarkers Study (HBS), the

NINDS Parkinson’s disease Biomarkers Program (PDBP) andMJFF

Parkinson’s ProgressionMarker Initiative (PPMI). Its latest release

expanded to include 10 247 participants from seven cohorts,

providing clinical, genomics and longitudinal transcriptomics

data for PD and control. Note that this longitudinal program

collected whole blood samples at different visits (e.g. baseline,

0.5, 6, 12, 18, 24 and 36months) for total RNA sequencing. In total,

8461 RNA-seq datasets (from n=3274 participants) along with

harmonized clinical measurement are available in the current

release at the AMP-PD website, providing a great resource to

study the progression of Parkinson’s. AMP-PD program hosts its

data in Google Cloud Platform (GCP) and recommends users to

access, run analysis tools, and collaborate via the Terra platform

(http://app.terra.bio/). Considering the trend that large omics

cohorts like this will generate more and more data, bringing

codes and tools to the data, instead of downloading the data to

the local server, will be a more practical solution.

BRAINcode

The BRAINcode project (http://www.humanbraincode.org) has

been established to decode the function of brain neurons vul-

nerable to neurodegenerative diseases (e.g. dopamine neurons

for PD, pyramidal neurons for AD) by integrative analysis of the

human neuronal genome, transcriptome and epigenome. In the

initial release, it included ultra-deep ribo-depleted total RNA-

seq from 50 000 neurons laser-captured from about 100 human

post-mortem brains, including dopamine neurons from sub-

stantial nigra (n=86 brains) and pyramidal neurons from cortex

(n=10 brains).Over 71 000 novel transcribednoncoding elements

(TNEs) were discovered in dopamine neurons, many of which

are consistent with the epigenetic features of active enhancers

(or eRNAs) [36]. eQTL analysis and GWAS colocalization anal-

ysis found that these eRNA elements are enriched for genetic

variants of both dopamine-hypoactive (e.g. PD) and dopamine-

hyperactive traits (e.g. schizophrenia and addiction). The second

phase of BRAINcode included 100 more brains from both AD

and PD patients and identified >11 000 neuronal circRNAs in

the brain transcriptome (data to be released soon). BRAINcode is

moving to its new phase by focusing on single-nucleus RNA-seq,

single-nucleus ATAC-seq, spatial transcriptome and single-cell

eQTL for additional 200 human brains.

CommonMind

CommonMind Consortium (CMC) generated a public resource of

functional genomic data from the dorsolateral prefrontal cortex

(DLPFC; Brodmann areas 9 and 46) of ∼1000 individuals from

four separate brain banks, including 501 control individuals, 353

diagnosedwith schizophrenia and 120 with bipolar disorder [37].

The genomic data include RNA-seq and SNP genotypes on 980

individuals and ATAC-seq on 269 individuals, of which 264 are

a subset of individuals with RNA-seq. Both raw and processed

data are available on the Synapse platform at http://CommonMi

nd.org.

BrainSeq

The BrainSeq is a project leading by the Lieber Institute

and pharmaceutical companies, aiming to characterize the

genetic and epigenetic regulation of transcriptome in distinct

brain regions across the human lifespan in samples of major

neuropsychiatric disorders and controls [38, 39]. Phase 1 of the

consortium included DLPFC polyA+ RNA-seq on 738 subjects

spanning the lifespan and three main psychiatric diagnostic

groups (schizophrenia, major depression disorder and bipolar

disorder). Phase 2 expanded to include the hippocampus

region and performed RiboZero-treated total RNA-seq for

551 subjects spanning the lifespan and adult patients with

schizophrenia. There were in total of 861 unique donors across

the first two phases of BrainSeq. There was also Illumina

450 k microarray data from Phase 2 on both hippocampus and

DLPFC to profile DNA methylation [40, 41]. They also provided

development- and schizophrenia-associated gene profiles and

eQTL resources at http://eqtl.brainseq.org. It’s worth noting

that Lieber Institute is also launching the African Ancestry

Neuroscience Research Initiative, aiming to make publicly

available the largest omics dataset in the world on human

post-mortem brains of individuals of recent African ancestry.

NeMO

The Neuroscience Multi-omic Archive (NeMO Archive) is a data

repository specifically focused on the storage and dissemina-

tion of omics data generated from the BRAIN Initiative and

related brain research projects. NeMO data include transcription

activity, methylation, histone modification profiles and chro-

matin accessibility for human, mouse and marmoset. The cur-

rent search of human data on the public BRAIN Initiative Cell

Census Network (BICCN) showed 418 samples with single-cell

RNA-seq (n=412) and single-cell ATAC-seq (n=6) with open

access. More human brain single-cell omics data (e.g. single-cell

PLAC-seq, ATAC-seq, RNA-seq data to define cell-type-specific

3D epigenomes [42]) are available on NeMO through restricted

access.
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Integrative multi-omics analyses
in brain research

Multi-omics integration at single-cell level

The high cellular complexity of the brain prompts the appli-

cation of single-cell omics approaches to understand genomic

regulation on a single-cell level. Darmanis et al. [43] were among

the first to provide single-cell transcriptomic data from 466

cells of the healthy human cortex. Subsequent efforts included

time course scRNA-seq profiling during neurogenesis, revealing

lineage-specific trajectories and the dynamics of neurogenic

transcription factors [44]. Single-cell methylation data were also

used to reveal neuronal subpopulation in the human cortex [45].

Latest studies, such as single-cell transcriptomic analysis of 48

Alzheimer’s patients and healthy individuals in the ROSMAP

cohort, have scaled up to 80 K cells, revealing unprecedented

insights into disease pathophysiology [46]. Recently STAB, a

spatio-temporal cell atlas of the human brain, defines 42 cell

subtypes across 20 brain regions and 11 developmental peri-

ods by analyzing 13 available human brain scRNA-seq datasets

[47]. Although human single-cell data remain scarce, various

resources provide mouse scRNA-seq data, with DropViz (http://

dropviz.org/, 690 K cells) and 10X Genomics (1.3 M cells [48])

currently being the largest.

scRNA-seq technologies have evolved to incorporate other

layers of multi-omics information, with open chromatin being

one of the recent additions [49]. Lake et al. [50] integrated

single-nucleus RNA sequencing (snDrop-seq) with single-cell

open chromatin profiling (scTHS-seq) in over 60 000 cells from

the human adult visual cortex, frontal cortex and cerebellum,

demonstrating better resolution of cell subpopulation and the

ability to predict one omics data from the other. Similarly,

Trevino et al. [51] integrated human forebrain-specific RNA-

seq and ATAC-seq data over the time course, revealing detailed

enhancer-gene activity correlations, the temporal activity of

neurogenesis-specific transcription factors and cell types and

time periods associated with susceptibility to neuropsychiatric

disorders. Li et al. [52] integrated scRNA-seq, small RNA-seq,

histone-seq and methylation data from psychENCODE and

BrainSpan to outline functional genomics of human brain

development and cell type-specific gene expression modules

associated with neuropsychiatric disorders. Details about these

and other studies are available at https://github.com/mdozmoro

v/scRNA-seq_notes#brain.

By integrating with genetic variation from genotyping array

or WGS, scRNA-seq also allows us to map eQTLs across different

cell types and in dynamic processes,many ofwhich are obscured

when using bulk-tissue methods. To apply this technology

to large-scale population genetics studies, Luke Franke and

his colleagues [53] have founded the single-cell eQTLGen

consortium (sc-eQTLGen), aimed at pinpointing the cellular

contexts in which disease-causing genetic variants affect gene

expression.

Recent development in spatial transcriptomics, such as 10X

Genomics Visium [54, 55], Slide-seq [56], HDST [57], MERFISH

[58] and LCM-seq [36, 59], enabled the unambiguous identifica-

tion of location-specific single-cell gene expression programs

[60]. These technologies are starting to be applied to reveal

the layered structure of the human DLPFC marked by distinct

gene expression programs [55]. Importantly, integration of spa-

tial transcriptomics with other data, such as neuropsychiatric

gene sets, demonstrated location-specific relevance of disease-

associated signal [55], opening the new chapter in integrative

multi-omics. More brain-specific single-cell spatial transcrip-

tomics datasets are becoming available [61]. A few other meth-

ods used scRNA-seq data to resolve spatial expression [62, 63].

Another addition is the 3D chromatin organization in brain

cells. Several studies used Hi-C and its variants to integrate 3D

genomics of the human brain with gene expression, histone

modifications (ChIP-seq), open chromatin (ATAC-seq) and GWAS

signals, demonstrating the importance of spatial organization

of the genome [5, 64–66]. Chromosome conformation capture

technologies have been extended on a single cell level [67], and,

integrated with gene expression, revealed associations between

the 3D structures and gene expression [68]. Recent developments

included technologies for simultaneous chromatin conforma-

tion capture and methylation in single cells [69, 70].

Methods and tools for multi-omics data integration

As summarized in Subramanian et al. [71], the goals for multi-

omics data integration can be approximately classified into

three categories: 1. Disease subtyping and classification based

on multi-omics profiles; 2. Prediction of biomarkers for various

applications; 3. Deriving biological insights. For example,

in disease genetic study, we usually combine genomic and

transcriptomic data via eQTL analysis to improve the detection

of common variants with functional effects (e.g. GTEx study

[22]). However, this approach is not easy because environmental

factors and disease state can also affect the transcriptome.

Mohammadi et al. [72] developed ANEVA-DOT to identify het-

erozygous DNA variants with unusually strong effects on gene

expression by comparing the expression activity of individuals’

maternal and paternal alleles. Montaner et al. [73] recently

reviewed the integrated analysis of multi-omics data (incl.

proteomics, genomics, transcriptomics and metabolomics) and

provided useful insight into stroke pathogenesis, identification

of therapeutic targets and biomarker discovery. The methods to

achieve that can be characterized as early and late integration

approaches, with the former combining the omics matrices into

one and then analyzing it, and the latter analyzing each omics

modality separately and then combining the results, reviewed in

Ref. [74]. Alternatively, the integration methods can be classified

as unsupervised (Matrix Factorization, correlation-based,

Bayesian methods, network-based methods) or supervised

(network-based methods, multiple kernel learning), reviewed

in Refs. [75–77], benchmarked in Tini et al. [78], and many

are implemented in the mixOmics R package [79]. The latest

development includes neural network architectures, such as

variational autoencoders (VAE), for data integration [80]. As

an application of these disease classification methods, Zhang

et al. [81] recently developed an end-to-end VAE-based model

called OmiVAE to extract low dimensional features and classify

samples from multi-omics data. By integrating genome-wide

DNA methylation and gene expression profiles together with

450 804 molecular features, they evaluated this model with

9081 samples of 33 tumor types and normal ones using the

pan-cancer multi-omics datasets from The Cancer Genome

Atlas (TCGA) [81]. OmiVAE was shown to achieve an average

classification accuracy of 97.49% after 10-fold cross-validation

among 33 tumor types and normal samples, which shows better

performance than other existing methods.

Comparing to bulk tissue data, single-cell omics data provide

more accurate transcriptome profiling of highly expressed genes

in high-resolution subtypes of cells, but at the time suffers

the problems of high cost, low coverage, shallow depth and

high missing data rate. Therefore, single-cell omics requires

new algorithms while adopting techniques developed for bulk
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omics data analysis. We provide examples of some of the most

representative single-cell integration methods and refer to the

aforementioned reviews for a more detailed overview. Methods

for integrating single-cell omics data include the use of non-

negative matrix factorization (NMF) [82] or similar dimension-

ality reduction or low-dimension embedding methods [83]. An

example method for integrating scRNA-seq with other single-

cell data is LIGER, an NMF-based method for integrating and

analyzing multiple single-cell datasets, across conditions, tech-

nologies (scRNA-seq, methylation, spatial transcriptomics) or

species (human and mouse) [84]. When applied to human and

mouse brain cells, it resolved otherwise unobservable spatial

cell states. A shared embedding-based method, Harmony, has

been used for the integration of scRNA-seq and spatial tran-

scriptomics data [85]. Integration of scRNA-seq and scATAC-seq

using Latent Semantic Indexing (LSI) and the modified term

frequency-inverse document frequency (TF-IDF) procedure has

been implemented in the Signac extension of the Seurat R

package [86]. Using dimensionality reduction and clustering, the

ArchR R package outperformed Signac in integrating scATAC-sec

and scRNA-seq data [87]. A network similarity-based CellWalker

method has been shown to be more robust to the sparsity and

noise of scRNA-seq and scATAC-seq data [88]. It has been applied

to the developing human brain and identified cells transitioning

between transcriptional states, resolved cell-specific enhancers

and mapped neurological trait-associated genes to specific cell

types via enhancers [88]. The MAESTRO suite of tools utilizes

best practices of integrative data analysis (e.g. graph-based and

density-based clustering, modeling gene regulatory potential

from chromatin accessibilities) for comprehensive integration

of scRNA-seq and scATAC-seq data, and provides blood- and

brain-specific cell signatures for annotating cell clusters [89].

3D genomics integration methods also started to appear. An

NMF-based approach for subpopulation-specific deconvolution

of bulk Hi-ChIP signal using scRNA-seq and scATAC-seq has

recently been proposed [90]. These methods demonstrate the

potential of single-cell multi-omics data integration to reveal

novel biological insights into complex cellular systems, such as

the brain and neuropsychiatric diseases.

A case study of schizophrenia with multi-omics data

As a case study for analyzing omics data, we would like to high-

light the study of schizophrenia by integrating multi-omics data

in PsychENCODE and other consortia [31]. The integrative analy-

sis [31] has merged multi-omics data from PsychENCODE, GTEx,

ENCODE, CommonMind, Roadmap Epigenomics and single-cell

analyses into a pyramidal structure, e.g. a base of raw data files, a

middle layer of uniformly processed and easily shareable results

(such as open chromatin regions and gene expression quantifi-

cations) and a top-level ‘cap’ of an integrative, deep-learning

model, based on regulatory networks and QTLs.

• At the transcriptomics level, they deconvoluted the bulk-

tissue RNA-seq data using an NMF-based approach and

compared the NMF top components (NMF-TC) with the

single-cell-derived cell type signature.Upon validation, they

then deconvoluted the bulk-tissue RNA-seqwith the single-

cell signatures to estimate cell fractions across individuals.

They showed that the weighted combinations of single-

cell signatures could account for most of the population-

level expression variation in bulk tissue,with an accuracy of

>88%.They then compared the cell fraction changes of each

cell type in various neuropsychiatric traits and reported

disease-specific cell proportion changes (see figure S15 in

[31]).
• At the epigenomics level, they annotated 79 056 enhancers

in the PFC by integrating the H3K27ac and H3K4me4 ChIP-

seq data in PsychENCODE and DNase-seq and ChIP-seq

data from Roadmap PFC samples. They then identified

QTLs affecting gene expression and chromatin activity by

performing expression, splicing-isoform, chromatin and

cell fraction QTLs (eQTLs, isoQTLs, cQTLs and fQTLs, respec-

tively). They revealed 33 000 eGenes in PFC, approaching

the total number of genes estimated to express in brains,

reflecting their large sample size. They also tested the

enrichment of various QTLs in different genomic annota-

tions.They showed the greatest intersection between eQTLs

and cQTLs. They revealed 2477 multi-QTLs. By integrating

with Hi-C interaction data, they found that QTLs involving

SNPs distal to eGenes but linked by Hi-C interactions

showed significantly stronger associations than those with

SNPs directly in the eGene promoter or exons.
• They further constructed the gene regulatory network by

linking enhancers, TFs and target genes. For example, they

used the coefficients of elastic net regression (e.g. assum-

ing that target gene expression is determined by a linear

combination of the expression levels of its regulating TFs) to

infer the linkage between TF and target genes. Based on the

regulatory network, they further connected the noncoding

GWAS variants to disease genes. They identified a set of

1111 putative SCZ-associated genes (the SCZ genes), 321 of

which were supported by more than two evidence sources

(e.g. QTLs and Hi-C). Interestingly, they found that most SCZ

genes were not even in LD with the index SNPs (∼67%, with

r2 <0.6). Last, they looped back these SCZ genes with single-

cell profiles and found that they are highly expressed in

neurons, particularly excitatory ones.
• Last, to fully capture the interaction between genotype and

phenotype beyond their regulatory network, they incorpo-

rated an interpretable deep-learning framework, the Deep

Structured Phenotype Network (DSPN). Unlike traditional

classification methods such as logistic regression which

predicts phenotype from genotype without intermediate

layers, DSPN can include intermediate layers for molecular

phenotypes (e.g. gene expression, enhancers, co-expression

modules, cell fraction) with sparse connectivity. The DSPN

was able to gain a larger, 6-fold improvement in predicting

traits, which may reflect its ability to incorporate nonlinear

interactions. For schizophrenia, the variance explained by

the full DSPN model exceeds that explained by common

SNPs (e.g. 32.8% versus 25.6%).

Limitations and future directions

Newly generated data

Ideally, we will need multi-omics data covering all biological

levels, intermediate steps from DNA to protein, all developmen-

tal stages from stem cells to death, all cell types from neurons

to glial cells and all states from drug-naive to patients under

various treatments. In reality, only a small fraction of the desired

data has been produced and is ready for use. Besides the data

summarized above, we know that more single-cell transcrip-

tome, ATAC-seq data will be available in the coming 1 or 2

years. Spatial transcriptome, Hi-C data will be useful for a better

understanding of brain transcriptome and its regulation. More

and more eQTL and other molecular QTL will be generated on
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the brain, brain cells at different developmental stages, different

racial backgrounds and sexes. Encouragingly, technologies for

assessing multi-omics signals from the same cells started to

appear, e.g. SNARE-seq assessing scRNA-seq and scATAC-seq

data [91].

Some specific omics data are still underrepresented. DNA

methylation data, microRNA expression and proteomics data

are examples that can be better covered. Ribo-seq (or ribosome

profiling) data will unlikely increase after Illumina ceased to

produce the kit. ChIP-seq data of transcription factors in brain

cells is one major category of data that is unfortunately largely

missing. Mitochondria-related genomics and epigenomics have

not obtained sufficient attention they may deserve yet.

We also should note that -omics are sensitive to sex, racial

genetic background and other variables, and the effects are

not presented well in most public databases. Racially diverse

data are still broadly not available. In 2019, researchers found

that ∼78% of GWAS individuals are of European ancestry [92].

The brain omics data have even less diversity. For example,

less than 4% of participants are non-white/Caucasian in the

current AMP-PD release. It is a massive problem for the research

aiming to be more inclusive. Initiatives like the African Ancestry

Neuroscience Research are expected to close the gap.

The ‘true’ single-cell transcriptome for human brains

The majority of single-cell transcriptome data in human brain

research is actually single-nuclei RNA-seq, not single-cell RNA-

seq, due to the current technology difficulty in extracting intact

neuronal cells from post-mortem frozen brain tissue without

breaking the cell membrane. Moreover, except for a few exper-

imental tryouts of total RNA sequencing in single cells (e.g.

SuPeR-seq [93], MATQ-seq [94], RamDA-seq [95] and DART-seq

[96]), most current single-cell RNA-seq studies are based on

polyA-enriched RNA sequencing methods, leaving many inter-

esting non-polyA RNAs (e.g. miRNAs, piRNAs, circRNAs, eRNAs)

out of attention. The integration of single-cell multi-omics is

affected by the issues in the single modality data, such as the

dropouts in the single-cell data and the resolution in cell cluster

definition and annotation. These will also be a huge challenge

in integration study. The validation and benchmarking of single-

cell/integration analytic tools are also urgently needed.

Human brain specimens versus cell lines

Typical approaches to study neurological diseases involved

human brain specimens from healthy and diseased individuals.

In contrast to widely accessible blood specimens, brain speci-

mens are typically obtained from post-mortem tissues, which

has its limitations: tissue degradation is the major one. RNA is

particularly sensitive to time after death. Another limitation is

that post-mortem tissue can only offer a snapshot of biological

systems,whichmay not be sufficient for revealing the dynamics

of symptoms and treatment responses. Cultured cells and newly

developed brain organoids are an important alternative for

generating multi-omics data with the advantages of relatively

homogeneous environmental factors and cell composition.

Host-microbiome multi-omics integration

Other than the host itself, integration with the omics data in the

microbiome is also emerging as an interesting direction. Because

the gut microbiome is an important activator of inflammatory

substances, researchers have observed that increased expres-

sion of immune-modulating microbiota such as Clostridia in the

guts leads to higher microglial density and IL-1β expression

in the brains of stress vulnerable rats [97]. Recent research in

Alzheimer’s showed that gut infection could trigger the pro-

duction of amyloid clumps in Alzheimer’s brains (see review

[98]). While mechanisms behind these gut-brain associations

are largely unclear, multi-omics integration between host and

microbe could shed light on new insights [99, 100].

Longitudinal multi-omics analysis

Most multi-omics analyses in human neuropsychiatric diseases

are cross-sectional (e.g. case versus control, sub-types of dis-

eases). Profiling omics longitudinally coupled with clinical mea-

sures and treatment outcomes could provide a more compre-

hensive assessment to improve disease risk prediction, early

detection and better treatment. Previous longitudinal multi-

omics efforts had successfully identified diseasemarkers for few

diseases [101–103], but not much in neuropsychiatric diseases.

One of the multi-omics cohorts we reviewed here, AMP-PD,

includes longitudinal blood RNA-seq data and clinical data for

Parkinson’s patients. We expect more longitudinal omics data

in neuropsychiatric research. Such longitudinal data are typi-

cally from peripheral tissues. Therefore, multi-omics compara-

tive analysis comparing brain and peripheral tissue is needed to

validate the brain relevance.

Correlation versus causality analysis

Many multi-omics studies generated correlation results. For

example, eQTL analysis is to identify the correlation between

genetic variation and gene expression.Many so-called ‘biomark-

ers’ are actually biomolecular signals that are associated/cor-

related with diseases, traits or states. We know correlation

does not prove causation. A typical example is that GWAS

leading variants are not necessarily the trait/disease causal

variants [104]. Several statistical fine-mapping methods have

been developed to suggest underlying causality from GWAS

output [105].Machine learning and deep learning have been used

to find patterns and correlations in the multi-omics data, which

might work well enough in many cases (e.g. tumor recognition,

disease prediction). However, if a model could capture causal

relationships, it will be more generalizable. Additionally, if we

can tell the cause from the effect, we are better positioned

to find cures for disease. Several complementary approaches

(e.g. Mendelian randomization, structural equations modeling,

Bayesian networks) have been applied to discover novel causal

effects of genomic and epigenomic variation on lipid phenotypes

[106].

High-dimension reduction challenge

Another challenge inmulti-omics integration is the high dimen-

sion. Although many multi-omics cohorts we reviewed here

have provided large sample sizes, the number of samples is

still much less than the number of features (N≪P). This is

becoming a trend as subjects are assessed with more and more

features (For example, UK Biobank has 500 000 participants

and each participant has 96 million SNPs, thousands of clini-

cal/lifestyle phenotypes and around 4000 imaging-derived phe-

notypes). This situation brings several problemswhen building a

model, such as overfitting, multicollinearity of the features and

infinite solutions for coefficients [107]. Reducing dimension is

recommended before integrating themulti-omics.Kegerreis et al.

[108] showed that classification based onWGCNA co-expression

modules [109] can better cope with variation among datasets
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compared to the classification based on raw gene expression.

Other dimension-reduction techniques, such as support vec-

tor machines (SVMs), random forest (RF) and singular value

decomposition (SVD) are also commonly used to reduce the

overfitting issue. In single-cell omics, methods such as PCA, t-

SNE and UMAP were used to reduce the dimension. Advanced

deep learning methods such as variational autoencoder (VAE)

can also output the lower dimensional latent representation for

high-dimensional data. Multiple testing inflation and signifi-

cance criteria are accompanying problems [110].

Heterogeneity and harmonization of the data sources

Samples from different cohorts or consortia could actually come

from the same subjects. For example, the integrative analysis

of DLPFC RNA-seq data from over 1800 brains in the PsychEN-

CODE consortium [31, 111] includes ∼500 brains from the first

phase of the BrainSeq study [112]. Most of our BRAINcode brain

samples are from Banner Health brain bank, which might also

be studied in other cohorts. Connecting different cohorts via

source ID (e.g. SOURCE_SUBJECT_ID in dbGap) or universal ID

(e.g. GUID in PDBP) could potentially reduce bias by removing

duplicated samples and increase power by connecting samples

from the same subjects. Sample identification andmatching are

critical for some data integration analyses when the analysis

relies on omics from the same subjects, such as QTL mapping.

The method DRAMS [113] offers a genotype-based solution to

ensure data alignment. Last but not least, the current single-

cell omics data are spread around in various publications. With

more andmore single-cell omics data coming, a centralized data

repository for single-cell omics data with harmonized QC will be

helpful for cross-cohort comparison and integration.

Open data sharing

Open genomic data sharing has been an essential ingredient for

successful research, long-rooted back to the Human Genome

Project. The broad sharing of data generated by genomic

research studies has maximized the utility of the data and the

public benefit of such projects [114]. In the last decade, both

public and private funding agencies recognized the importance

of data sharing and urged to share the data after they are

generated, even before the first use by data producers. Brain-

related consortia such as psychENCODE,AMP-AD,CommonMind

and AMP-PD are good advocates and practitioners for that policy.

Centralized data repositories such as Synapse (https://www.syna

pse.org) and NIGADS (https://www.niagads.org) have made data

sharing and downloading easy. Open sharing policy is also being

applied to the protocols, methods and codes, to enhance the

research reproducibility [115].

Key Points

• Global efforts in brain research have made many

multi-omics data resources available.
• Open data sharing policy will make the best use of

the data.
• Integrative analysis across multiple cohorts is needed.
• The fast-evolving single-cell omics technologies are

revolutionizing brain research.
• A public-editable webpage for the brain multi-omics

resources is provided: http://bit.ly/brain_omics
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